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This paper describes the method to analyze the free vibrations of simply supported
cylindrical shells with an interior rectangular plate by using the receptance method. This
method is based on the ratio of a de#ection (or slope) response to a harmonic force (or
moment) at the joint. After "nding the free vibrational characteristics of the simply
supported plate and shell before combination, the frequency equation of the combined
system is obtained by considering the continuity conditions at the joint between the plate
and the shell. When the line load and moment applied along the joint are assumed as the
Dirac delta and sinusoidal function, the continuity conditions at the joint are proven to be
satis"ed. The numerical results are compared with published works and experimental results
in order to show the validity of the formulation, and that the analytical results agree with
those from other methods.
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1. INTRODUCTION

In many industrial applications, the beams, plates and shells are often used as basic
components of the structures. Especially, the circular cylindrical shells are used to
approximate more complex structures such as in aerospace, submarine and nuclear
engineering. But actual structures in the engineering "eld are combinations of basic
structural elements. Compared to the cylindrical shell, the combined shell with
a longitudinal, interior rectangular plate seems to be a more realistic model. For example,
an aircraft fuselage with #oor structure may be idealized as a combined shell of the plate
and shell. When the plate and shell are combined, the dynamic behavior of the combined
structure becomes relatively complicated due to the mechanical coupling between the
interior plate and the shell. Thus, it is necessary to develop an analytical method of
evaluating the vibrational characteristics and to obtain information about the vibrations of
the combined shell.

There are many studies in the literature for the free vibration of basic elements such as the
plate and shell. Among available papers, Leissa [1, 2] investigated extensively the vibration
of the plate and shell with various shapes and boundary conditions, and o!ered to engineers
useful information for the design of structures. Sewall et al. [3, 4] applied the Rayleigh}Ritz
method to solve for the natural frequencies and mode shapes of sti!ened shells, circular and
non-circular shells. Lee and Kim [5, 6] studied the in#uence of various boundary conditions
on the free vibrational behavior of the rotating composite cylindrical shells with axial and
circumferential sti!eners. They used Love's shell theory based on the discrete sti!ener
theory to derive the governing equation of the sti!ened shell. One useful approach for
0022-460X/01/480477#21 $35.00/0 ( 2001 Academic Press
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analyzing the free vibration of combined structures is the receptance method discussed by
Bishop and Johnson [7]. Sakharov [8] applied the receptance method to calculate the
vibrational characteristics of a shell system composed of a circular cylindrical shell with an
annular plate at one end. Azimi et al. [9, 10] studied the natural frequencies and modes of
continuous rectangular plates and cylindrical polygonal ducts using the receptance method.
Huang and Soedel [11] presented the results of an analysis of both ends of a simply
supported cylindrical shell with a plate at an arbitrary axial position. Also Yim et al. [12]
applied this method to analyze the free vibration of a clamped}free circular cylindrical shell
with a plate attached at an arbitrary axial position. They obtained the frequency equation of
the combined system by considering the continuity condition at the shell/plate joint,
numerical results compared with these from a "nite element analysis and vibration test.

Although the receptance method is not applied in the analysis of the vibration for
combined structures of the interior rectangular plate and cylindrical shell, which can be
idealized in the aircraft fuselage or submarine structure, several methods are used to treat
combined shell problems with an interior rectangular plate. Peterson and Boyd [13], who
used a Rayleigh}Ritz method to study the free vibration of a circular cylindrical shell
partitioned by an interior rectangular plate, developed the "rst analytical approach. This
paper presented the e!ects of several parameters such as joint conditions between the plate
and the shell, thickness of the structure and the position of the plate on the frequencies and
the mode shapes of the combined shell. Irie et al. [14, 15] studied the free vibration of
non-circular cylindrical shells with longitudinal interior partitions and jointed conical}
cylindrical shells by using the transfer matrix. Langley [16] applied a dynamic sti!ness
technique for the vibration analysis of a simply supported sti!ened shell structure. Recently,
Missaoui et al. [17] studied the free and forced vibration of a cylindrical shell with a #oor
partition based on a variational formulation in which the structural coupling is simulated
using arti"cial spring systems. Petyt and Wei [18] presented an e$cient analytical model of
an idealized fuselage structure or predicting vibrational characteristics by using an extended
Rayleigh}Ritz technique. They considered a circular cylindrical sti!ened shell and a
rectangular sandwich plate with equally spaced sti!eners for the fuselage and #oor respectively.

In the present study, the receptance method is employed to obtain the vibrational
characteristics of a simply supported cylindrical shell with an interior plate. For the
individual system of the simply supported plate and shell, the natural frequencies and mode
shape functions are obtained through the Rayleigh}Ritz procedure based on the energy
principle. The analytical results are compared with those of the existing literature and an
experiment using the modal testing [19]. The analytical results agreed well with those from
the available results and the test showing the validity of the current formulation.

2. ANALYTICAL FORMULATION

The geometry of the circular cylindrical shell with an interior plate and the co-ordinate
systems are shown in Figure 1. The displacement components of the shell and the plate in
each direction are presented as us

1
, us
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3
and up

1
, up
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3
respectively, where, superscript s and

p indicate the shell and the plate respectively. The plate is attached at h*
1

and h*
2

position of
the shell based on the vertical centerline.

2.1. FREE VIBRATION OF THE SHELL AND THE PLATE

It is necessary that the natural frequencies of the component systems before combination
are calculated to obtain the vibrational characteristics of the combined system. For a plate



Figure 1. Geometry of the circular composite cylindrical shell with an interior plate.
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simply supported along all edges, it has been shown in reference [20] that the solution of the
equation of motion of the transverse vibration of the plate can be expressed as
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where R is the plate aspect ratio (¸
p
/b) and D
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transverse mode shapes corresponding to those frequencies are
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Similarly, the natural frequencies and mode shape functions of the simply supported
cylindrical shell are obtained to apply the receptance method for the combined structure.
These are calculated by Rayleigh}Ritz method based on the energy principle and Love's
shell theory. For the symmetric laminates with multiple specially orthotropic layers, the
strain and kinetic energy of the laminated shell as given in reference [22] can be written as
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where a is the radius of the cylindrical shell.
The strain}displacement relations for a circular cylindrical shell are based on Love's shell

theory. They can be expressed as follows:
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where (,) represents partial di!erentiation for the space and e, i are the mid-surface strains
and curvatures respectively.

The displacement functions which satisfy the boundary conditions at both ends are of the
form
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where ;
imn

are the undetermined amplitude coe$cients, / is the phase angle, and m,
n represent half wave numbers in the axial and circumferential directions respectively.
Substituting equations (6}8) into the energy equations (4}5) and solving the minimization
problem relative to the undetermined coe$cients by applying the Rayleigh}Ritz method,
the frequency equation of a simply supported cylindrical shell can be obtained as follows:
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where u
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are the angular natural frequencies of the shell. The three natural modes that are
associated with the natural frequencies at each m, n combination can be expressed as
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2.2. DISPLACEMENTS AND SLOPES DUE TO DYNAMIC LOADING

Figure 2 shows the cross-sectional view of the displacements and the slopes at shell/plate
junctions due to the dynamic transverse line loads and moments around the shell exerted by
the motion of vibration. The displacements of a structure subjected to dynamic loading can
be expressed by modal displacement and modal participation factor as an in"nite series:
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Figure 2. Loads (or moments) and displacements (or slopes) of the combined structure.
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where ;
imn

denote the mode components of the plate and the shell in three principal
directions, mn represents the mode number. Also, the modal participation factor g

mn
is the

root of the following modal equation for the steady state harmonic response of the
structure:
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is the modal damping coe$cient, and j is the damping factor. The input forcing
functions, q*

i
(i"1, 2, 3) are the forces applied at two joints in the axial, circumferential and

transverse normal direction. In equation (12), the mode participation factor of more mn can
be obtained as
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Thus, if we take mn terms of the modal expansion series as approximation to an in"nite
number, we can present the displacement in terms of the mode summation. By neglecting
the damping of the system, the displacements of the structure in equation (11) can be
rewritten as
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Figure 3. Forces (a) and moments (b) applied on the shell at the joints.
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u
mn

is the angular frequency of two independent systems which are calculated by Love's
shell theory and classical plate theory. The dynamic forcing function F*

mn
can be obtained in

equation (14), and the displacements of the plate and shell in equation (17) will be used later
to calculate the receptances.

When a rectangular plate is attached at (x, h*
1
) and (x, h*

2
) positions of the cylindrical shell,

the transverse dynamic excitation exerted at the joints due to the constraint of the
displacements of the shell by the plate is shown in Figure 3(a). In this case the line loads on
a cylindrical shell can be assumed as
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where d is the Dirac delta function. Also, f *
1

, f *
2

are the transverse forcing functions applied
at two joints in the circumferential direction. The transverse mode shape of the shell
satisfying the simply supported boundary conditions is used as equation (19) by neglecting
the components in axial and circumferential directions in equation (10).
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Substituting equations (18) and (19) into equation (14), in the case of mN "m the dynamic
forcing function F*
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Using equations (17) and (20), the dynamic displacement of the shell can be expressed as
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The circumferential slope of the shell can be obtained from equation (23) by di!erentiation
with respect to the circumferential co-ordinate h:
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As shown in Figure 3(b), the dynamic moment loading exerted at two joints due to the
constraint by the plate can be expressed as
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respectively. The forcing functions due to the moment loading can
be obtained from reference [22] as
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Therefore, the displacement of the shell by moment loading can be expressed as
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Figure 4. Forces (a) and moments (b) applied on the plate at the joints.
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The slope of shell by moment loading at the joints can also be obtained from equation (23)
by di!erentiation with respect to the circumferential co-ordinate h.
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As a similar method, one can consider the receptances for a rectangular plate simply
supported at all edges with forces and moments exerted at two joints, (x, y*

1
) and (x, y*

2
). To

formulate the receptances that one needs, the displacement and slope as the function of
x-co-ordinate due to forces and moments are calculated. The dynamic excitation
(Figure 4(a)) exerted at the joints due to the constraint of the displacements of the plate
by the shell can be assumed as equation (37) using the Dirac delta and sinusoidal
function.
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Also, the mode shape function expressing the in-plane displacement of the simply supported
plate can be assumed as
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To obtain the slope of a simply supported rectangular plate by edge moments, the
transverse mode shape function given in equation (3) can be used. The periodic line
moments (Figure 4(b)) excited at the joints, (x, y*

1
) and (x, y*
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) can be expressed as
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Thus, the transverse displacement of the plate by dynamic moments is
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The slope of the plate in the width direction by dynamic moments can be obtained from
equation (43) by di!erentiation with respect to the co-ordinate, y:
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2.3. FREQUENCY EQUATION FOR COMBINED SHELL

A receptance is de"ned as the ratio of a displacement or slope response at a certain point
to a harmonic force or moment input at the same or di!erent point. When the two systems
are joined and no forces (or moments) external to the two systems are applied, it must be
equal because of displacement (or slope) continuity. Thus, the natural frequencies of
combined structure can be found from [22]
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For the combined shell with an interior rectangular plate as shown in Figure 2,
receptances for the shell and the plate are de"ned as follows.

For the shell:
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For the plate:
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The frequency equation can be derived considering the continuity condition at shell/plate
junctions. In this study, only the slope of the plate in the width direction and the normal
displacement of the shell due to dynamic forces are considered. The normal displacement of
the plate and the slope of the shell in the circumferential direction due to dynamic moments
are taken into consideration because the other components of displacement can be ignored.
By applying the continuity condition at the joints, the frequency equation can be expressed
as
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For the rectangular plate, neglecting the in-plane displacements due to moments, (up
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"0. Thus, from the condition of

having a non-trivial solution of equation (52), the frequency equation of the combined shell
can be obtained in the following form.

a
11
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11
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13
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21
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22
#b

22
a
23
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24
#b

24
a
31
#b

31
a
32
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31
#b

33
a
34

a
41

a
42
#b

42
a
43

a
44
#b

44

"0, (53)

where a
ij
, b

ij
are the receptances of the shell and the plate respectively. They can be

calculated as the ratio of a displacement (or slope) response at two joints to a harmonic
force (or moment) input. The calculated receptances of the shell and the plate are given in
Appendices A and B respectively.



Figure 5. Convergence of frequencies for the CFRP plain weave composite combined shell with an interior plate
at the center of the shell; a"0)109 m, b"0)218 m, ¸

s
"¸

p
"0)36 m, h

s
"h

p
"0)0037 m, E

1
"E

2
"58)0 GPa,

G"3)9 GPa, o"1540 kg/m3, l"0)08: *s* , plate only P(1, 1); *d* , combined shell ("rst mode); *j* ,
combined shell (second mode); *h* , shell only S(1, 3).
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3. NUMERICAL RESULTS AND DISCUSSION

The frequencies of a combined shell are obtained by using a computer program. After
"nding the frequencies of the simply supported plate and shell at both ends, the results are
used to calculate the natural frequencies of the combined shell. In order to examine the
convergence of the natural frequencies obtained from the proposed method and determine
the suitable terms of the iteration as the number of terms in the displacement series is
increased, the natural frequencies for the experimental model which will be discussed later
are estimated. In this case, the plate consisted of the same material and uniform thickness
and length as the shell, and is located at the center of the shell. The results are shown in
Figure 5. Subsequent analyses are made with at least 10 circumferential terms in the shell
displacement series and seven terms in the plate displacement series.

To show the validity of the analytical results using the receptance method, the results are
compared with those given by available references for a simply supported isotropic
cylindrical shell with an interior plate at several locations. Following references, results are
obtained for a shell of radius 0)254 m, length 1)27 m, and thickness 0)00508 m, with material
properties E"200 GPa, o"7500 kg/m3, and l"0)3. The interior plate is taken to have
the same thickness and properties as the shell, and located at h*

1
"1153.

The natural frequencies are presented as frequency parameters, X"auJo(1!l2)/E,
and are shown in Table 1. Peterson and Boyd [13] presented the results for the e!ects of
a longitudinal, interior plate on the natural frequencies and mode shapes using
a Rayleigh}Ritz technique. Missaoui et al. [17] studied the modal characteristics and the
vibrational response of a cylindrical shell with a #oor partition using arti"cial spring
systems. It is shown that the present results using the receptance method are somewhat
smaller than those of references [13, 17] for the symmetric and antisymmetric modes. But
there is a good agreement (within 8)5%) between the present method and the reference's
results. The fundamental frequency of the combined shell is 104)0 Hz and the normalized
value is X"0)0306. One can notice a clear deviation of the results obtained by Peterson
et al. [13], particularly for the fundamental frequency. This is due to an error committed in



TABLE 1

Comparison of frequency parameters (X) of the simply supported isotropic cylindrical shell with
interior plate at h*

1
"1153 location; a"0)254 m, b"0)46 m, ¸

s
"¸

p
"1)27 m,

h
s
"h

p
"0)00508 m

Frequency parameter (X)

Mode Present method Ref. [13] Di!. (%) Ref. [17] Di!. (%)

1S 0)0306 0)0367 16)6 0)0334 8)4
2S 0)0670 0)0693 3)3 0)0715 6)3
3S 0)0883 0)0939 5)9 0)0958 7)8
4S 0)1128 0)1170 3)6 0)1150 1)9

1A 0)0589 0)0625 5)7 0)0606 2)8
2A 0)0774 0)0828 6)5 0)0805 3)8
3A 0)0961 0)1030 6)7 0)1050 8)4
4A 0)1277 0)1330 3)9 0)1330 3)9

TABLE 2

Comparison of frequency parameters (X) of the simply supported isotropic cylindrical shell
with interior plate (symmetric mode) at several locations; a"0)254 m, b"0)46 m,

¸
s
"¸

p
"1)27 m, h

s
"h

p
"0)00508 m

Frequency parameter (X)
Plate

location Mode Present Ref. [13] Di!. (%) Ref. [16] Di!. (%)

1 0)0255 0)0296 13)8 0)0267 8)4
h*
1
"903 2 0)0670 0)0630 6)0 0)0647 6)3

3 0)0791 0)0863 8)3 0)0855 7)8
4 0)1368 0)1350 1)3 0)1320 1)9

1 0)0306 0)0367 16)6 0)0321 4)7
h*
1
"1153 2 0)0670 0)0693 3)3 0)0713 6)0

3 0)0883 0)0939 5)9 0)0949 6)9
4 0)1128 0)1170 3)6 0)1160 2)7

1 0)0491 0)0572 14)2 0)0483 1)6
h*
1
"1353 2 0)0670 0)0709 4)2 0)0707 5)2

3 0)0775 0)0795 2)5 0)0818 5)3
4 0)1377 0)1330 3)4 0)1360 1)2
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the compatibility equations at the #oor/shell junctions in his work, which has also been
pointed out and criticized by Langley [16] and Missaoui et al. [17].

Table 2 presents the frequency parameters of the symmetric modes of a cylindrical
combined shell with an interior plate at several locations, h*

1
"90, 115, and 1353. The

comparison of results is made with those given by Peterson et al. [13], and Langley [16]
using a dynamic sti!ness technique. The fundamental frequency of the combined shell



Figure 6. Comparison of fundamental frequency parameters (X) of the isotropic cylindrical shell with an interior
plate of several locations: *d* , present; h , reference [13]; n , reference [16].

TABLE 3

Dimensions (mm) of CFRP plain weave composite combined shells

Shell Plate
Plate

location Length (¸
s
) Radius (a) Thickness (h

s
) Length (¸

p
) width (b) Thickness (h

p
)

h*
1
"903 360 109 3)7 360 218 3)7

h*
1
"1203 360 109 4)0 360 188)8 3)6
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increases as the plate is located farther from the center of the shell. Since the "rst mode of
the combined shell involves only bending of the interior plate, this increment can be
attributed to a decrease in the width of the plate. The results for mode shapes may be found
in references and experimental values, which will be discussed in Figures 7 and 8. As
a result, the present results agree well (within 8)5%), except for a clear deviation of the
fundamental frequency given by reference [13]. This trend can also be con"rmed from the
results as shown in Figure 6, which provide the comparison of the fundamental frequency
parameter to various locations of the plate.

As another method to verify the analytical results, a modal test using the impact exciting
method is performed. The specimens manufactured in this investigation are composed of
CFRP plain weave composite with stacking sequence, [0

3
/$45

3
/903

3
]
s
. The geometrical

data of the combined shells tested are given in Table 3. The shells consist of the same
material and length as the plate. The plate is attached at h*

1
"90 and 1203 locations on the

shell and fabricated by co-curing in an autoclave. The material properties of the CFRP
composite specimen are obtained by uniaxial tensile tests as

E
1
"E

2
"58)0 GPa, G

12
"3)9 GPa, o"1540 kg/m3, l

12
"0)08



TABLE 4

Comparison of the natural frequencies of analytical and experimental results of the CFRP
plain weave composite cylindrical shell with an interior plate at h*

1
"903 location

Method

Experiment
Receptance

Modes Freq. (Hz) Freq. (Hz) P(m, n) S(m, n)

First 389)6 400)0 (1, 1) *

Second 568)2 575)0 (2, 1) *

Third 905)0 887)5 (3, 1) *

Fourth 925)7 925)0 (1, 2) *

Fifth 1162)6 987)5 (1, 2) (1, 3)
Sixth 1250)8 1225)0 (2, 2) *

Seventh 1284)9 1262.5 * (1, 2)
Eighth 1333)9 1325)0 * (1, 4)
Ninth 1399)5 1512)0 (3, 2) (1, 4)
Tenth 1644.8 1650)0 * (1, 5)

sFrequency ascending order.
Note: (1) A dash and underline indicate small amplitude. (2) P(m, n), S (m, n): Half wave numbers of the plate and

shell.
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The "rst 10 natural frequencies (Hz) of analytical and experimental methods of CFRP
plain weave composite cylindrical shell with an interior plate at the center of the shell
(h*

1
"903) are listed in Table 4. In the table, a dash and underline of the experimental results

indicate small amplitude, and the P(m, n) and S (m, n) represent the mode numbers of the
plate and shell respectively. m represents the longitudinal wave number, and n represents the
width or circumferential wave numbers. The discrepancy between analytical and
experimental results is about 2)6% for the lowest fundamental frequency, and less than
7)5% for the other frequencies, except for the "fth mode coupled between the plate and the
shell with a maximum 15% di!erence. When the plate is attached at the center of the shell,
the interior plate greatly restricts the behavior of the shell, which "rst appears in the "fth
mode. Among many causes of the deviation between analytical and experimental results,
the 15% deviation in the "fth mode is due to the e!ect of boundary conditions on the
natural frequencies in the experiment. The fundamental frequency of the combined shell is
389)6 Hz, and it shows the "rst bending mode of the interior plate with one half longitudinal
and width weave, P (1, 1). As shown in the table, the "rst three frequencies are the bending
modes (m"1, 2, 3) of the plate in the longitudinal direction for n"1. This is because the
length (¸

p
) of the plate is larger than the width (b). The fourth frequency is P(1, 2) mode,

which shows the second bending of an interior plate in the width direction. For the
specimen considered in this study, the "rst frequency of the shell appears in the "fth mode as
an ascending order, and it is 1162)6 Hz with the S (1, 3) mode. Generally, in the case of the
same dimension between the plate and the shell, the sti!ness of the shell is greater than that
of the plate. Thus, the frequency showing the shell mode is also higher than for the plate
because the frequencies of the combined shell depend on the vibrational characteristics
before combination of the two systems.

Table 5 presents the natural frequencies (Hz) of the CFRP combined shell with an
interior plate at h*

1
"1203 location. Although the thickness of the two specimens shows

little di!erence, the characteristics similar to the results provided in Table 4 are observed



TABLE 5

Comparison of the natural frequencies of analytical and experimental results of the CFRP
plain weave composite cylindrical shell with an interior plate at h*

1
"1203 location

Method

Experiment
Freq. (Hz)

Modes Receptance Freq. (Hz) P(m, n) S(m, n)

First 476)4 470)0 (1, 2) *

Second 644)0 620)0 (2, 1) *

Third 963.1 865)0 (3, 1) *

Fourth 973)4 925)0 (1, 2) (1, 3)
Fifth 1082)8 1080)0 (4, 1) (1, 2)
Sixth 1210)6 1215)0 * (1, 4)

Seventh 1268)2 1305)0 (1, 3) *

Eighth 1389)8 1340)0 * (1, 4)
Ninth 1437)2 1430)0 (2, 2) *

Tenth 1451.2 1660)0 (3, 2) *

sFrequency ascending order.
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on the natural frequencies and modes. When the plate is located farther from the center of
the shell, the "rst three frequencies are increased because the plate modes are dominant in
the lower frequencies. This phenomenon can be recognized as the sti!ness e!ect of the plate
due to the decrement of the width acting on the frequency of the combined shell. It can be
found that the "rst frequency of the shell appears in the fourth mode, S (1, 3).

The experimental mode shapes of CFRP combined cylindrical shell with the plate at
h*
1
"903 and 1203 locations are shown in Figures 7 and 8. These "gures show

a cross-section of the combined shell in the longitudinal and circumferential directions. As
obtained by previous workers and experimental results, the lowest frequency corresponds
to a bending mode, which is basically governed by an interior plate motion. In case of the
combined shell with the plate at the center of the shell the "rst four frequencies show the
transverse bending modes of an interior plate with negligible motion of the shell. The shell
mode appears "rst in the "fth mode, in which one notices a slight deformation of the plate
and a strong motion of the shell.

Figure 8 shows the experimental mode shapes of a combined shell with the plate located
farther from the center of the shell (h*

1
"1203) than in the case discussed in Figure 7

(h*
1
"903). In this case the same trends are noted for the modes of an interior plate.

However, the circumferential bending of the shell and the transverse bending of the plate
are coupled with the increment of the frequency, especially for the S (1, 2) mode of the
shell.

4. CONCLUSIONS

A frequency equation for the analysis of free vibration of the circular cylindrical shell with
an interior plate is formulated using the receptance method. Using the analysis results of
free vibration for two simply supported structures by Love's shell and classical plate theory,



Figure 7. Experimental mode shapes of the CFRP plain weave composite cylindrical shell with an interior plate
at h1

*
"903 location: (a) plate modes and (b) shell modes.
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a frequency equation of the shell/plate combined system was obtained. The natural
frequencies are compared with the previously published and experimental results to show
the validity of the current formulation. The main conclusions of the investigations are
summarized as follows.

(1) When the line load and moment applied along the joint are assumed as
sinusoidal function, the continuity conditions at the plate/shell joints are proven to be
satis"ed.

(2) The fundamental frequency of the combined shell exhibits principally plate motion
with one half wave in each direction. As the e!ect of the location of the plate, the frequencies
for the lower range showing plate modes increase as the plate is located farther from the
center of the shell due to the increment of the plate sti!ness.

(3) For the combined system, the dominant frequency of the shell appears in the fourth or
"fth mode due to the sti!ness di!erence between the plate and the shell.

(4) It is expected that the method developed in this paper can be used for the analysis of
free vibration of the combined cylindrical shell with arbitary end conditions.



Figure 8. Experimental mode shapes of the CFRP plain weave composite cylindrical shell with an interior plate
at h1

*
"1203 location: (a) plate modes and (b) shell modes.
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APPENDIX A: TERMS IN EQUATION (53)

In equation (53) the receptances of the shell are given as
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APPENDIX B: TERMS IN EQUATION (53)

Similarly, in equation (53) the receptances of the plate are given as:
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APPENDIX C: NOMENCLATURE

A
ij

extensional sti!ness of shell (i, j"1, 2, 6)
a radius of the shell
b width of the plate
D

ij
bending sti!ness of the plate and shell (i, j"1, 2, 6)

E
1
, E

2
Young's modulus in the axial and transverse direction

f
i
, F

i
forces and amplitudes at shell/plate junction in the transverse or width directions

F*
mn

dynamic force function
G

12
shear modulus

h
p
, h

s
thickness of the plate, shell

k
ij

sti!ness matrix of the shell (i, j"1, 2, 3)
¸
p
, ¸

s
length of the plate, shell

m
i
, M

i
moments and amplitudes at shell/plate junction (i"1, 2)

m
ij

mass matrix of the shell (i, j"1, 2, 3)
q*
i

input forcing functions at shell/plate junction in the axial, circumferential and transverse
normal to the surface (i"1, 2, 3)

¹h line moments at shell/plate junction
us
i

displacement components of the shell in the axial, circumferential and transverse
direction (i"1, 2, 3)

up
i

displacement components of the plate in the axial, width and transverse direction
(i"1, 2, 3)

;
ik

natural mode components in each direction for mode mn (i"1, 2, 3)
x, y, z

p
co-ordinates of the plate

x, h, z
s

co-ordinates of the shell
y*
1
, y*

2
y directional co-ordinates of the plate where the shell is attached

a
ij
, b

ij
receptances of the shell and plate (i, j"1, 2, 3, 4)

d Dirac delta function
e
x
, eh, exh strains of the shell mid-surface

f
mn

modal damping coe$cient
g
mn

modal participation factor of mode mn
h*
1
, h*

2
circumferential co-ordinates of the shell where the plate is attached

i
x
, ih , ixh curvatures of the shell mid-surface

o
p
, o

s
mass density of the plate and shell

tp
2

slope of the plate in the width direction
tsh slope of the shell in the circumferential direction
X non-dimensional frequency parameter, auJo(1!l2/E
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u angular frequency of the combined shell for mode mn
u

mn
angular frequency of the plate and shell for (m, n) mode

Superscripts or subscripts

s cylindrical shell
p rectangular plate
mn mnth mode
F
1
, F

2
forces applied at shell/plate junctions, h"h*

1
and h*

2
respectively

M
1
, M

2
moments applied at shell/plate junctions, h"h*

1
and h*

2
respectively
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